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ELLIPTIC BINOMIAL DIOPHANTINE EQUATIONS 

ROELOF J. STROEKER AND BENJAMIN M. M. DE WEGER 

ABSTRACT. The complete sets of solutions of the equation (k) = (m) are 
determined for the cases (k,e) = (2,3), (2,4), (2, 6), (2,8), (3,4), (3,6), (4,6), 
(4, 8). In each of these cases the equation is reduced to an elliptic equation, 
which is solved by using linear forms in elliptic logarithms. In all but one case 
this is more or less routine, but in the remaining case ((k, t) = (3, 6)) we had 
to devise a new variant of the method. 

1. INTRODUCTION 

In Pascal's Triangle, composed of the binomial coefficients (n) for n= 
0,1,2,..., 0 < k < n, all natural numbers, with the exception of 2, occur at 
least twice, and many three times or more. Not counting multiple occurrences of 

trivial type, coming from (O) 1, ( n) = and (k) (nJn k),one could 
formulate the following problem. 

Main Problem. To determine all natural numbers that occur at least twice in 
Pascal's Triangle as binomial coefficient (k) with 2 < k < mn. 

As yet this problem is unsolved in its full generality. The only nontrivial solutions 
known at this time are the following: 

(1) 

(12) ('i) =3 120, (21) 4('0) 210, (52) (232) 1540, 

(120) 3() 7140, (123) =(5) 11628, (221) =(87) 24310, 

(78) = 155= (14) 03 

and - 1 for i = 1, 2, ... \F2i FI2i+3 J 2iF2i3 ? 1/ 

where Fn is the nth Fibonacci number, defined by Fo = 0, F1 = 1, and Fn+ I 
Fn + Fn_1 for n = 1, 2 .... This infinite family of solutions is due to D.A. Lind 
[L] and D.A. Singmaster [Sin]. It is conjectured that there are no other nontrivial 

solutions, and it is known that there are none with (n) < 1030 or n < 1000, cf. 
[dW2]. 
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For fixed k, ? (with 2 < k < ?) the equation (k) (i") has been completely 

solved in three cases only, namely for (k,?) = (2,3) by E.T. Avanesov [A], for 
(k, ?) = (2,4) by one of us [dWl] and independently by A. Pinter [P], and for 
(k,?) = (3,4) by a remark of one of us, noting that the equation in this case 
reduces at once to an equation solved by L.J. Mordell [Ml], see [dW2]. 

For a few choices of (k, ?) the equation (k) (e) represents an elliptic curve, 

or can be transformed into another equation representing an elliptic curve. Note 

that (n) is, for fixed k, a polynomial in n of degree k with rational coefficients. 

For even k, using the obvious symmetry about n - k2i it is also a polynomial in 2 
(n- k-l)2 of degree 1 k with rational coefficients. In particular, 

(n) is quadratic in n, (n) is cubic in n, 

(n) is quartic in n, and also quadratic in (n_ 3)2- 

(n) is cubic in (n - 5)2, (n) is quartic in (n - 7)2. 

Now, let fq, gq E Z[x] be polynomials of degree q. Then the equations 

y2 = f3 (X), y2 = f4 (X), f3(Y) = g3(X) 

generically represent elliptic curves. Equations of the first two types y2 fq (x) 

for q = 3,4 can be reduced to a number of Thue equations, cf. L.J. Mordell [Ml], 
and for Thue equations general solution methods exist, based on estimations for 
linear forms in logarithms of algebraic numbers, cf. N. Tzanakis and B.M.M. de 
Weger [TW]. Such methods were used in [dWl] and- [P] cited above, for solving 

(2) ('c) . An alternative, though often less practical approach is provided by 

Yu. Bilu and G. Hanrot [BH]. For the case f3(Y) = g3(x) however we do not know 
of any practical method that works in general. Only some very special types can be 
solved, such as superelliptic equations (where f3(y) = y3, see [BH]). In theory an 
upper bound for the absolute values of the coordinates of an integral point on any 
model g(x, y) = 0 for an elliptic curve is explicitly known (cf. [BC]), but the known 
upper bounds are so large as to render the corresponding search range completely 
unworkable. 

Only recently techniques have been developed involving estimations of linear 
forms in elliptic logarithms for the solution of elliptic diophantine equations. We 
felt that most likely this method should also work quite efficiently for the binomial 
equations at hand. Success should be almost guaranteed for any reasonable equa- 
tion of type y2 = fq(x) for q = 3,4, as the elliptic logarithm method, developed 
independently by R.J. Stroeker and N. Tzanakis [ST1], by J. Gebel, A. Petho and 
H.G. Zimmer [GPZ], and by N.P. Smart [Sm] for q = 3, and by N. Tzanakis [T] for 
q = 4, is quite generally applicable. 

For the case f3(y) = g3(x), which also represents an elliptic curve, a similar 
method should be applicable, but such a method is not to be found yet in the 
literature. As it turned out, the main ideas of [ST1] and [T] carried through to this 
case too, without significant changes. This points at the probable existence of an 
efficient method for solving any reasonable equation of type f3 (y) = g3 (x), and even 
of the more general type f3 (x, y) = 0, where f E Z(x, y) has degree 3 and is not 
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necessarily homogeneous. We study this general type of equation in a forthcoming 
paper [SW]; in the present paper we merely concentrate on the particular equation 

coming from (3) 6 
All this enabled us to prove the following results. Three of them are already 

known, but for these we present different proofs. From now on we do not maintain 
the restriction m,, n > 0 anymore, but we will allow mn, n Ez Z, based on the definition 

Ihk-1 

(k) =h! H(n- for k > 0. 
i=o 

Theorem A23 (Avanesov). The only solutions of (2) 3() are those listed 

in Table T23. 

Theorem A24 (de Weger, Pinter). The only solutions of (2) 4(n) are those 

listed in Table T24. 

Theorem A26. The only sol'utions of (2) = (n) are those listed in Table T26. 

Theorem A28. The only solu'tions of (2) 6(n) are those listed in Table T28. 

Theorem A34 (Mordell, de Weger). The only sol'utions of (3) =('7w) are those 

listed in Table T34. 

Theorem A36. The only solutions of (2) =(8) are those listed in Table T36. 

Theorem A46. The only solutions of (3) 4(6) are those listed in Table T46. 

Theorem A48. The only soluztions of (3) 6(8) are those listed in Table T48. 

One might wonder what can be said about other combinations of values for k 

and f in (k) (7) than those considered here. If k = 2 or k = 4 then we 

encounter an equation of type y2 = f (x), which represents a hyperelliptic curve 
of genus L[T2 > 2 when f > 5. For such equations there are approaches that 
should work as a rule, like those by Thue equations, or by Bilu's method [BH], but 
in any practical sense these techniques seem too complex by far, even for the case 

of (2) =(5) For other values of (k, f) no methods are known, and all we can 

say is that in many of these cases the binomial equation (k) (7) possibly 

represents an algebraic curve of genus > 1, and therefore at most finitely many 
rational solutions exist, by celebrated results of G. Faltings [F]. 

Very recently we have been able to completely solve the equations (,) 
(n + 2) (which has no nontrivial solutions) and (n) ( + 2) (which has 

no nontrivial solutions other than (I) (4) ). We did this by the same vari- 

ant of the elliptic logarithms method that we use in the present paper for solving 

(3) ('s') . We intend to give details in our forthcoming paper [SW]. 



1260 ROELOF J. STROEKER AND BENJAMIN M. M. DE WEGER 

TABLE 1. Transformations from binomial equations to elliptic equations 

(k, ?) transformation 
(2,3) X-3m-3 Y = 9n-5 

(2,4) U-m-2 V = 6n-3 

(2, 6) X= 5m2 _ 25m + 8 Y = 75n-38 
(2, 8) U =m2 _ 7m + 6 V = 210n-105 
(3, 4) X n -1 Y I 2 _3m 

(3,6) U-n-1 V =m2 5m + 3 
(4, 6) X-15m2-_ 7m5 + 25 Y 225 n2 _ 675 n + 112 

(4, 8) U =m2 _ 7m + 3 V= 105n2-315n + 105 

We now turn to the above mentioned eight cases, which we shall call elliptic 
binomial equations. Inspired by the above remarks, we introduce changes of vari- 
ables as given in Table 1. Notice that the new variables (X, Y or U, V) are integral 
valued. 

These transformations are chosen such that the resulting equations have a conve- 
nient form. For the cases of type f2 (Y) = g3 (X) this means that a global minimal 
Weierstrass equation over Z is obtained; for the cases of type f2(V) = g4(U) this 
means that f2(V) = V2, the constant term in g4(U) is a square, and the coefficients 

are integers as small as possible; and for the case f3(U) = g3(V) the coefficients of 
both polynomials are again integers, as small as possible. 

It now will be clear that Theorems A23 to A48 are consequences of the following 
results. 

Theorem B23. The complete set of solutions in rational integers X, Y of the equa- 
tion 

(W23) Y2 + y = X3 - 9X + 20 

is given in Table T23. 

TABLE T23. The solutions to (W23) and to (2) 3() 

X Y n m ml m2 X Y n m ml m2 

-3 -5 0 0 1 1 6 13 2 3 1 -1 
-3 4 1 0 -1 -1 10 -31 -2 -2 
-2 -6 0 -2 10 30 2 2 
-2 5 0 2 12 -41 -4 5 2 1 

0 -5 0 1 -1 0 12 40 5 5 -2 -1 
0 4 1 1 1 0 27 -140 -15 10 1 -2 
1 -4 2 0 27 139 16 10 -1 2 
1 3 -2 0 63 -500 -55 22 -3 0 
3 -5 0 2 0 -1 63 499 56 22 3 0 
3 4 1 2 0 1 105 -1076 -119 36 1 3 
6 -14 -1 3 -1 1 105 1075 120 36 -1 -3 

Theorem B24. The complete set of solutions in rational integers U, V of the equa- 
tion 

(Q24) V2 = 3U4 + 6U3 - 3U2 -6U+9 
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is given in Table T24. 

TABLE T24. The solutions to (Q24) and to (n) (4) 

U V n m ml m2 mT U V n m ml m2 mT 

-9 -123 -20 -7 0 2 1 0 -3 0 2 -1 1 1 
-9 123 21 -7 -1 -1 0 0 3 1 2 0 0 0 
-5 -33 -5 -3 1 0 1 1 -3 0 3 -1 0 1 
-5 33 6 -3 -2 1 0 1 3 1 3 0 1 0 
-3 -9 -1 -1 -2 0 1 2 -9 -1 4 1 1 1 
-3 9 2 -1 1 1 0 2 9 2 4 -2 0 0 
-2 -3 0 0 0 1 1 4 -33 -5 6 -2 1 1 
-2 3 1 0 -1 0 0 4 33 6 6 1 0 0 
-1 -3 0 1 0 0 1 8 -123 -20 10 -1 -1 1 
-1 3 1 1 -1 1 0 8 123 21 10 0 2 0 

Theorem B26. The complete set of solutions in rational integers X, Y of the equa- 
tion 

(W26) Y2 + Y = X3 + X2 - 58X + 1294 

is given in Table T26. 

TABLE T26. The solutions to (W26) and to (n) m(6) 

X Y n m ml m2 X Y n m ml m2 

-13 -5 0 -2 23 -113 -1 -1,6 -1 1 
-13 4 0 2 23 112 2 -1,6 1 -1 

-7 -38 0 2,3 -1 0 68 -563 -7 -3,8 1 -2 
-7 37 1 2,3 1 0 68 562 8 -3,8 -1 2 
-2 -38 0 1,4 1 1 133 -1538 -20 -5,10 -2 3 
-2 37 1 1,4 -1 -1 133 1537 21 -5,10 2 -3 

2 -35 -2 2 233 -3563 -2 -1 
2 34 2 -2 233 3562 2 1 
8 -38 0 0,5 0 -1 323 -5813 -77 -9,14 3 -1 
8 37 1 0,5 0 1 323 5812 78 -9,14 -3 1 

14 -59 2 0 2234 -105614 0 4 
14 58 -2 0 2234 105613 0 -4 

Theorem B28. The complete set of solutions in rational integers U, V of the equa- 
tion 

(Q28) V2 = 35U4 - 350U3 + 945U2 - 630U + 11025 

is given in Table T28. 

Theorem B34 (Mordell). The complete set of solutions in rational integers X, Y 
of the equation 

(W34) Y2 + y = X3 - X 

is given in Table T34. 
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TABLE T28. The solutions to (Q28) and to (2) =(8) 

u v n m ml m2 m3 m4 'm5 
-147 -132195 1 0 -1 0 -1 
-147 132195 0 0 0 -1 1 

-25 -4445 1 0 -2 0 0 
-25 4445 0 0 1 -1 0 
-15 -1785 1 -1 0 -1 0 
-15 1785 0 1 -1 0 0 

-4 -245 0 1 0 0 0 
-4 245 1 -1 -1 -1 0 

0 -105 0 3,4 1 0 -1 -1 0 
0 105 1 3,4 0 0 0 0 0 
1 -105 0 2,5 0 0 -1 0 0 
1 105 1 2,5 1 0 0 -1 0 
3 -105 0 1,6 1 0 0 0 0 
3 105 1 1,6 0 0 -1 -1 0 
6 -105 0 0, 7 0 0 0 -1 0 
6 105 1 0,7 1 0 -1 0 0 
8 -175 1 1 -1 0 0 
8 175 0 -1 0 -1 0 

10 -315 -1 -1,8 1 0 0 -1 1 
10 315 2 -1,8 0 0 -1 0. -1 
21 -1995 -9 -3,10 0 -1 -1 -1 0 
21 1995 10 -3,10 1 1 0 0 0 
55 -16275 -77 -7,14 1 1 0 1 0 
55 16275 78 -7,14 0 -1 -1 -2 0 
91 -46305 -220 -10,17 0 1 -1 -1 0 
91 46305 221 -10,17 1 -1 0 0 0 

TABLE T34. The solutions to (W34) and to (n) m() 

X Y n m Mnl x Y n m ml 
-1 -1 0 1,2 3 1 0 2 0,3 2 
-1 0 0 0,3 -3 2 -3 3 4 

0 -1 1 1,2 -1 2 2 3 -1,4 -4 
0 0 1 0,3 1 6 -15 7 -6 
1 -1 2 1,2 -2 6 14 7 -4, 7 6 

TABLE T36. The solutions to (C36) and to (n) m(6) 

U V n mn ml m2 m3 m4 U V ni m ml Mn2 m3 m4 

-1 0 0 2,3 0 1 1 0 1 0 2 2,3 -1 0 0 -1 
-1 1 0 1,4 0 0 0 -1 1 1 2 1,4 0 0 1 0 
-1 3 0 0,5 -1 0 0 0 1 3 2 0,5 0 1 0 0 

0 0 1 2,3 0 0 0 0 2 6 3 -1,6 -1 0 1 -1 
0 1 1 1,4 -1 1 0 0 8 21 9 -4,9 1 0 0 0 
0 3 1 0,5 0 0 1 -1 

Theorem B36. The complete set of solutions in rational integers U, V of the equa- 
tion 

(C36) 15U3 - 15U _ V3 - 4V2 + 3V 

is given in Table T36. 
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TABLE T46. The solutions to (W46) and to (4) 6(6) 

X Y n m ml m2 m3 

-29 -32 1 1 -1 
-29 31 -1 - 1 
-25 -88 0 1 1 
-25 87 0 -1 -1 
-20 -113 1,2 2,3 0 -1 0 
-20 112 0,3 2,3 0 1 0 
-14 -122 -2 0 0 
-14 121 2 0 0 

-5 -113 1,2 1,4 1 1 0 
-5 112 0,3 1,4 -1 -1 0 

5 -88 -1 0 -1 
5 87 1 0 1 

14 -75 -2 -2 0 
14 74 2 2 0 
16 -77 1 1 1 
16 76 -1 -1 -1 
20 -88 1 -1 0 
20 87 -1 1 0 
25 -113 1,2 0,5 -1 0 0 
25 112 0,3 0,5 1 0 0 
49 -320 0 2 0 
49 319 0 -2 0 
70 -563 0 0 -1 
70 562 -1,4 -1,6 0 1 
79 -680 1 -1 1 
79 679 -1 1 -1 

130 -1463 -1 0 1 
130 1462 1 0 -1 
250 -3938 -1 -2 0 
250 3937 1 2 0 
305 -5313 1 2 -1 
305 5312 -1 -2 1 
400 -7988 2 1 1 
400 7987 -7,10 -5,10 -2 -1 -1 
695 -18313 -3 -1 0 
695 18312 3 1 0 

1555 -61313 2 -1 0 
1555 61312 -2 1 0 
1645 -66713 0 2 1 
1645 66712 0 -2 -1 

18895 -2597288 -1 1 -2 
18895 2597287 1 -1 2 

Theorem B46. The complete set of soluttions in rational integers X, Y of the equa- 
tion 

(W46) Y2 + Y = X3 - 525X + 10156 

is given in Table T46. 

Theorem B48. The complete set of solutions in rational integers U, V of the equa- 
tion 

(Q48) V2 = 105U4 + 210U - 945U2 - 1890U + 11025 
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TABLE T48. The solutions to (Q48) and to (n) (8) 

U V n m ml m2 m3 U V n m mI m2 m3 

-3 -105 1,2 3,4 0 1 0 3 -105 1,2 0,7 -1 0 0 
-3 105 0,3 3,4 -1 0 -1 3 105 0,3 0,7 0 1 -1 
-2 -105 1,2 2,5 0 0 -1 7 -525 1 1 -1 
-2 105 0,3 2,5 -1 1 0 7 525 -1,4 -1,8 -2 0 0 

0 -105 1,2 1,6 -1 1 -1 33 -11445 -2 0 -1 
0 105 0,3 1,6 0 0 0 33 11445 -9,12 -5,12 1 1 0 

is given in Table T48. 

Remarks. Theorem B23 is a bit more general than the result of Avanesov [A], and 
our proof is rather different. 

Theorem B24 is merely a restatement of the main result of [dWl] and [P]. Again 
the proof we give below is of a different nature. 

Theorem B34 is the main result of [Ml]. See also J.H. Silverman [Sill, Exercise 
9.13, p. 275] for a different proof, and see [dW2]. The proof we give below is new. 

The meaning of the parameters m1,... , m,, mT, given in the Tables T23 to T48, 
will be made clear in the next sections. 

2. THE CASES "QUADRATIC = CUBIC" 

In this section we shall prove the Theorems B23, B26, B34 and B46, and thus 
also Theorems A23, A26, A34 and A46. We start by giving in Table 2 some data 
on the elliptic curves defined by (W23), (W26), (W34) and (W46), namely the 
minimal discriminant A, the j-invariant j, and the torsion group. These data are 
easy to compute, e.g. with Apecs. 

Further we need the rank r, and a basis P1,... ,P, for the free part of the 
Mordell-Weil group. This is more difficult, but can be done. We have the following 
result. 

Proposition 1. The elliptic curves (W23), (W26), (W34) and (W46) have ranks 
r and bases P1,... ,P, for the free parts of their Mordell- Weil groups as in Table 
3. 

Proof of Proposition 1. We used J.E. Cremona's program mwrank (dated 21 Feb- 
ruary 1997, see [Cr]) on a Sun Sparcstation 4 to compute (unconditionally) the 
ranks and the Mordell-Weil groups of the four curves. During execution no unusual 
events occurred. 

Briefly, what the program does is this. First a 2-descent is carried out in order 
to determine a basis for the quotient group E(Q)/2E(Q). What might go wrong - 
but it didn't in these four cases - is that one of the relevant homogeneous spaces to 

TABLE 2. Data of elliptic curves 

curve j torsion 

(W23) -130491 = -36 179 -110592/179 = -212 33 179-1 trivial 
(W26) -732796875 = _35 56 193 -1404928/46899 = -212 35 73 1931 trivial 

(W34) 37 110592/37 = 212 .33 .37-1 trivial 
(W46) -35299546875 = _37 56 1033 -1404928/3099 = -212 3-1 73 1033-1 trivial 
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TABLE 3. Ranks and bases of Mordell-Weil groups 

curve r P1 P2 P3 

(W23) 2 (0,4) (3,4) 
(W26) 2 (-7,37) (8,37) 
(W34) 1 (0,0) 
(W46) 3 (25, 112) (-20,112) (70, 562) 

TABLE 4. Relevant constants on heights of basis points 

curve (W23) (W26) (W34) (W46) 
B 0.3027 0.6939 0.0256 1.561 
H 6.530 9.152 4.832 11.30 

runtime 3s 14s 2s 7m 26s 

be searched for rational points happens to be locally solvable at all primes, without 
any actual rational point being detected. A successful 2-descent should determine 
the rank of the curve. Next, an infinite descent has to be done. The purpose of this 
is to obtain a basis for E(Q), given a basis for E(Q)/mE(Q) for some m > 2. Here 
always m = 2. To this end usually Zagier's theorem [Sik, Theorem 1.1] is used: if 
the set 

S(B) := {P E E(Q) I h(P) < B} 

contains a complete set of coset representatives for mE(Q) in E(Q), then S(B) 
generates E(Q). Here h is the Neron-Tate height function. For the successful 
application of Zagier's theorem it is important that B is not too large. The relevant 
B-values for our curves are rather small, see Table 4. 

Finally, the inequality 
1 
-h(P) - h(P) < Hdif for all P E E (Q), 2 

where Hdif is Siksek's [Sik] or Silverman's [Sil2] bound, whichever proves to be 
smaller, gives an upper bound 

h(P) < 2B + 2Hdif =: H 

for the naive height h(P) for all P E S(B). These bounds, given in Table 4, are 
not too large, so that a direct search does not cause any problems. We also give 
runtimes on a Sun Sparcstation 4 in Table 4. E 

Note that Cremona and Siksek use a canonical height function h which is twice 
the height function used in [ST1]. Also Apecs uses the latter. Here we shall adopt 
the convention of [ST1]. 

Further we remark that by a unimodular transformation we arranged the bases 
such that the least eigenvalue of the Neron-Tate height pairing matrix, called c1 
below, is as large as possible, see [ST2]. This is of importance for an optimal result 
of the reduction procedure described below. 

To prove Theorems B23, B26, B34 and B46, we use the method of linear forms 
in elliptic logarithms. We closely follow Stroeker and Tzanakis [ST1], from which 
paper we also adopt the notation. The proofs are very much a routine matter, 
taking only a few seconds of runtime on a personal computer. 
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TABLE 5. Relevant constants from [ST1] 

curve (W23) (W26) (W34) (W46) 
(a, a2, a3, a4, a6) (05 0,1,-9,20) (0, 1,1-58,1294) (05 0,1,-1,0) (05 0,1,-525,10156) 

(u, v, w,z) (1, 0, 0,-2) (1, -3,?,5- 1) (1, 0, 0,-2) (1, 0, 0,-2) 

(a, b) (_95 81) (175 141875) (-15 1) (-5255 40625) 

ay -3.78765 ... -12.7143... 0.837565... -29.4862 ... 
h(P1) 0.170261 ... 0.224280 ... 0.0255557 ... 0.321316 ... 
h(P2) 0.202708 ... 0.213613 ... 0.374043... 
h(P3) 0.703410 ... 

C1 0.147776 ... 0.122596 ... 0.0255557 ... 0.210864... 
C2 7.57530 ... 25.4286 ... 2.21431 ... 58.9725... 

Xo 8 26 3 59 
C3 0.902545 ... 2.21110... 1.97333 ... 2.63185... 
w 5.89947 ... 2.67273 ... 5.98691 ... 2.06023 ... 

S?T 0.739959 ... 0.820738 ... 1.22112 ... 0.751930... 
/(P1) 0.347573 ... 0.401475 ... 0.189458 ... 0.202441... 
O(P2) 0.206446... 0.246042... 0.429501... 
O(P3) 0.117061 ... 

u1 2.05050 ... 1.073036... 1.13427 ... 0.417077... 
U2 1.21792... 0.657605 ... 0.884874... 
U3 0.241173 ... 
hE 11.6136 ... 14.1554 ... 11.6136 ... 14.1554 ... 
Ao 42.6087 ... 36.0874... 11.6136 ... 41.5942... 
A1 11.6136 ... 14.1554 ... 11.6136 ... 14.1554 ... 
A2 11.6136... 14.1554... 14.1554... 
A3 14.1554 ... 

C4 3.60535 ... X 
1073 4.53651 ... X 1073 4.81455... X 1043 8.46092 ... x 10110 

? e e e e 
C5 1 1 1 1 

C6 12.6136... 15.1554... 12.6136... 15.1554... 
C7 1.724397 ... 1.724397... 1.0625 2.11944 ... 
C8 12.8748... 15.4167... 12.6361... 15.5592... 

M0 4.62556 x 1040 7.50381 X 1040 2.28469'x 1025 1.42762 x 1060 

For an integral point we write P = m1P1 + ... + m,Pr, where P1,... , P, is the 
basis from Table 3. We write M = max Imi . We omit most of the details of the 

1<i<r 

method, as we do not want to repeat the material of the paper [ST1]. Let us just 
say that the linear form in elliptic logarithms has the shape 

L(P) = mow + miu, + ... + MrUr) 

where ui = w(Pi) are the elliptic logarithms. Here mo E Z is taken such that all 
q-values are in [0, 1). It follows that max{M, ImoI} < rM. 

On the one hand we have an upper bound for this linear form: 

(2) IL(P) i < 4V/eC3 -cl M2 

where the constants are defined in [ST1]; their values and other particulars of our 
equations are given in Table 5. For the calculation of C3 the Siksek bound [Sik] was 
used. 

On the other hand the main result by David [D] on linear forms in elliptic 
logarithms plays an essential r6le, as it provides a lower bound for the linear form: 

IL(P)I > exp (-c4(10g(M) + c7)(10glog(M) + C,)r+2). 

Together with (2) this yields an absolute upper bound Mo for M. 
The calculations for Table 5 were performed with Apecs 4.2, and required negli- 

gible runtime. 
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TABLE 6. Data of the reduction steps 

curve Mo C d > -A1 C d> M2 C d > A/3 
(W23) 4.62556 x 1040 O'2 1.62319 x 1041 36 106 121.136 9 i04 31.8904 7 
(W26) 7.50381 x 1040 10124 2.22699 x 1041 39 106 138.701 10 105 52.9622 9 
(W34) 2.28469 x 1025 1051 7.58375 x 1025 49 104 110.788 18 103 61.4003 16 
(W46) 1.42762 x 1060 10243 5.88376 x 1060 44 109 164.322 10 107 36.9323 9 

To reduce the large upper bound Mo, we apply lattice base reduction to the 
lattice spanned by the columns of the matrix 

1 0 .. O 

0 1 O O 
A~~~~~~~~ 
A= . ... . . 

[Cul] [CU21 ... [CUr-] [CI 
where C is a large constant, of the size of MO'+', and where [.] denotes rounding to 
the nearest integer. For a possible solution of our elliptic equation we look at the 
lattice point 

A(ml,... ,mr,mo)T = (in,... MrA)T 

where A thus is a good approximation to CL(P), viz. 

1 
A - CL(P) -(rAo + mo ) <-rA0. 

We applied Zagier's algorithm for computing the values of q(Pi) to the desired pre- 
cision (of somewhat more than (r + 1) log1o Mo decimal digits). For each of the four 
lattices we computed a reduced basis by the LLL-algorithm. These computations 
were done by Pari 1.39. 

From the reduced basis we find a lower bound d for the length of the shortest 
nonzero lattice vector. We may assume that d is large enough. If it isn't, then we 
have to try a larger value of C. We find that either m1 = ... 0, or 

JA V > d2 m-n2 ..m2 > d2 - rM02, 

and thus 

JL(P) > ( d2-rM r rMo). 

Together with inequality (2) this yields a reduced upper bound M1 for Ml, namely 

M [ = L (log (4 2) +Hc3-log( d2 - rM -rMo))] 

Iterating the procedure, we reduced M1A4 further to M2 and finally to M3. In Table 
6 we list the values for C that we chose, the values for d that follow from the 
application of the LLL-algorithm, and the reduced upper bounds Ml1[, A/12, M3 for 
M. 

We checked all points P corresponding to r-tuples (m1,... , mr) with M < M3 
for being solutions to inequality (2). The solutions thus found we checked for 
integrality of the coordinates X, Y of P. These computations we again did in 
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TABLE 7. Runtimes 

curve comput. of q(Pi) reduction small solut. 
(W23) 3s < Is 6s 
(W26) 3s < Is lOs 
(W34) < Is < Is Is 
(W46) 25s 8s 4m 28s 

Apecs. This produced the results mentioned above, and thus completes our proof. 
Finally we give in Table 7 the runtimes on a Pentium 75Mhz personal computer. 

3. THE CASES "QUADRATIC = QUARTIC" 

In this section we prove Theorems B24, B28 and B48, and thus also Theorems 
A24, A28 and A48. We use the method of linear forms in elliptic logarithms. We 
follow Tzanakis [T], but at certain points use slight variations in the arguments. 
The proofs are to some extent a routine matter, but now things are essentially more 
complicated than in the previous section. We start by giving some information on 
the elliptic curves represented by the equations (Q24), (Q28) and (Q48). 

The birational transformations 

U = 6X1-18 JX -Uv -6U+6V+18 

lV= _ -27X -3 Y?882X+-84Yi-4167 18U3-18U2-6UV-54U+36V+108 V ~~(Xl?Yi-17)2 ' 
, U3 

relate equation (Q24) and the minimal model 

(W24) 2= X3- 147X1 + 610. 

The birational transformations 

u = 210X1+130410 
3Xj+Y1Y+35805' 

- 195615X2+105Y?2+340341750Xi-7127820Yi-226983637125 

(3X1 +Y +35805)2 

X, 
- 315U2-630U+210V+22050 

{ Yi = -36750U3+198450U2-630UV-198450U+44100V+4630500 

1- U3 

relate equation (Q28) and the minimal model 

(W28) 2= X3- 1620675X1 + 385103250. 
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TABLE 8. Data of elliptic curves 

curve A i torsion 
(W24) 42550272 = 470596/57 Z/22 = (T), 

2_210 37 .19 22.3-1 .76. 19-1 T = (5,0) 
(W28) 208370506291920000000 = 114354828/50615 = trivial 

210 37 .57 .76 . 53- 191 22 35 . 5-1 .76 . 53-1 . 191-1 

(W48) 999362923039687500 = 112678587/27620 = trivial 
22322. 39 . 57 76 1381 2-2 33 . 5-1 .73.233.1381-1 

TABLE 9. Ranks and bases of Mordell-Weil groups 

curve r P1 P2 P3 P4 P5 
(W24) 2 (11,18) (29,144) 

(W28) 5 (105,14700) (-1365,7350) (-315,-29400) (210,7350) (_ 4235 87_00 

(W48) 3 (-236,11143) (79,5473) (631 2268 

The birational transformations 

u 105X1-18690 
5X,+Yi-2403' 

V -55965X2 +105X1Y1O+l5Y?2+70087815X,+336420Y1-11480080185 
(5X,+Y1-2403)2 

-, 
-157U2-945U-j-105V-j-11025 

2U2 

l Y = 5591U3-49140U2-525UV-154350U+11025V+1157625 

relate equation (Q48) and the minimal model 

(W48) y+ =XX3Y-X2 - 3328 17XI + 56191841. 

In Table 8 some data on these elliptic curves are given, namely the minimal 
discriminant A, the j-invariant j, and the torsion group. In the case of nontrivial 
torsion generators of the torsion group are given. 

Further we need the rank r, and a basis P1,... ,Pr for the free part of the 
Mordell-Weil group. We have the following result. In the sequel coordinates of 
points on the elliptic curves are given for the minimal models (W24), (W28) and 
(W48), unless explicitly stated otherwise. 

Proposition 2. The elliptic curves (W24), (W28) and (W48) have ranks r and 
bases P1,... , P for the free parts of their Mordell- Weil groups as in Table 9. 

Proof of Proposition 2. Again we use Cremona's mwrank. No difficulties were en- 
countered with (W24). But with (W28) and (W48) mwrank ran into trouble, as 
the upper bounds H the program computed for these curves turned out to be too 
large. Table 10 gives the relevant values found by mwrank, where the runtimes on 
a Sun Sparcstation 4 for (W28) and (W48) reflect the time it took mrank (without 
'w') to compute a set of representatives for E(Q)/2E(Q). 

Starting from here, we calculated by hand improved sets of representatives re- 
sulting in much better values for B. The bounds H on the logarithmic height so 
obtained appear to be small enough for Cremona's findinf to run successfully. This 
is true for (W48), but in the case of (W28) findinf produces erroneous results like 
points not on the curve, or it overlooks existing relations between points. John 



1270 ROELOF .J. STROEIKER AND BENJAMIN ML. M'. DE WEGER 

TABLE 10. Relevant constants oii heights of basis points 

curve (W24) (W28) (W48) 
B 0.8105 5.117 2.734 
H 9.063 22.79 17.93 

runtime 13s 6h 54m 75h 9m 

TABLE 11. Relevant constants on heights of basis points 

curve (W28) (W48) 
B 3.199 1.711 
H 16.265 12.634 

runtime (findinf) 2 weeks 2h 

Creiiiona told us that these errors are most likely due to roundoff. We give the 
improved values for B and H in Table 11. Here the runtime given in the case of 
(W28) is the expected total runtime for a hypothetically completely succesful run 
of the program findinf, estimated from the amount of work it had completed when 
it ran into serious trouble. 

In the case of (W28) we use the sieving technique described in [Sik, section 4.1]. 
As a result of the 2-descent, we know that the points Pi (i = 1,... , 5) of Table 9 
generate a subgroup of odd index mn in E(Q). 

First we have to find an upper bound for rn. This we do by [Sik, Theorem 3.1]. 
To compute A such that h(Q) < A has no solutions Q C E(Q) other than the 
point at ilnfinity, we try to show that there are no such points with h(Q) < h(P3) 
0.794302 .... Because Siksek's upper bounid for 2h(Q) - h(Q) is Hdif = 4.93332 ..., 
we search, using Cremona's findinf, for the points with h(Q) < 2(h(P3) + Hdif) < 
11.4553. This search took 13 minutes and 40 seconds on a Sun Sparcstation 4, and 
revealed that there are no points Q with h(Q) < A = 0.794302. 

The regulator of P1,... ,P5 is R = 28.3648.... Now [Sik, Theorem 3.1] tells us 
that 

( 8R ) 1/2 
I I~~ ~4.73582 ... 

- \(2A) 5 , 

so that m < 3. Note that Siksek uses twice our height. 
Now we start the sieving, to show that m -7 3. Let 

V3 = {(a,,... , a5) I ai C {-1, 0, 1}, a1P1 + ... + a5P5 C 3E(Q)}. 

As m = 3 implies the existence of a nonzero elemiient of VT3, we intenid to show that 
V?3 {(0,0,0,0,0)}. 

Let v be a prime of good reduction, such that #E(IF,) is divisible by 3, but niot by 
9. Put f = -#E(IF,). Then the group ?E(IF,) has order 3. Compute a generator G 
of this group, anid compute ml, .. . , m,5 E {-1, 0, 1} such that ?Pi- =imG (mod v). 
Now, if (al,... ,a5) E VI3, then f?(aiPl + . .. + a.5P5) E 3 E(Q), so that 

(rnial +... + m5a5)G _ a1?Pi + . .. + a5eP5 _ 0 (mod v). 
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TABLE 12. Relations found in Siksek sieving 

v e G m1 m2 m3 m4 m5 
11 5 5P1 1 0 1 1 1 
17 7 7P1 1 0 1 -1 -1 
23 10 lOP1 1 -1 -1 1 -1 
31 11 liP1 1 1 0 -1 1 
43 16 16P2 0 1 -1 1 -1 
47 20 20P2 0 1 -1 -1 0 
59 20 20P1 1 1 1 0 1 

As G generates a group of order 3 in E(IF,), we find that 

mia + ... + m5a5 0 (mod 3), 

which constitutes a relation on the a,. 
We do the above computation for a number of primes v, to find as many indepen- 

dent relations as needed or as possible. It turned out that seven primes, starting 
from the smallest, is a sufficient number in our situation to find 5 independent 
relations, thus proving that V3 = {(0, 0, 0, 0, 0)}. In Table 12 we give the primes v, 
and for each prime the number X, the generator G, and the relation mni,... ,m5. 
Note that the 7 x 5 matrix of the mi, defined (mod 3), has rank 5 inldeed. C: 

Again note that each Mordell-Weil basis given is optimal for the least eigenvalue 
of the Neron-Tate height pairing matrix. 

We note that there is some symmetry, namely the irrelevance of the sign of V, 
that we now describe. We take the point Q as follows: 

(W24): Q =-P1 + P2 + T = (3,-14) 
(W28): Q = P1 - P3 - P4 = (-621,33942) 
(W48): Q = -PI + P2 - P3 = (178,-1691) 

If a point P on the curve has coordinates U(P), V(P) on the quartic model, then 
we have 

{ U(-P + Q) = U(P), 
l V(-P + Q) = -V(P). 

As z\ > 0, the Weierstrass curve E(IR) has a compact component and an infinite 
component. We denote the infinite component by Eo (R). Since Q is on the compact 
component, it follows that of the two points P, -P + Q always one is on Eo(R). 
Thus from now on we may assume without loss of generality that our point P is on 
the infinite component. In the case of (W24) this implies that P is in the free part 
of the Mordell-Weil group, i.e. that we can forget about the torsion point. 

In the case of equation (W24) there is yet another symmetry: 

{ U(P+T) -U(P)-1, f U(-P+Q+T) = -U(P)-1, 
V(P + T) -V(P), V(-P + Q + T) V(P) 

(note that Q + T is in the free part of the Mordell-Weil group). It follows that in 
this case we may as well assume without loss of generality that U > 0. 

In Table 14 (later) we give the relevant constants from [T]. 
For all three of our elliptic curves we have that xo > e1, so that U > Uo implies 

that the point P is on Eo(R). The group Eo0(Q) of rational points on this infinite 
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TABLE 13. Bases of relevant subgroups of Mordell-Weil groups 

curve R, R2 R3 R4 R5 
(W24) P1 = (11, 18) P2 (29, 144) 
(W28) Pl + P4 = P2 + P4 = P3 + P4 P + P2 + P3 + P4= -P4 + P5 

(4585, 298900) (1155, -7350) (5005, -343000) (1099 40670) (1605, -43800) 
(W48) Pi-P2 Pi + P2 = P-P3 = 

(2914, 152893) (464, 993) (989, 25843) 

component is a subgroup of E(Q) of index 2. Clearly all that we need is a basis 
RI, . .. , R for this smaller group only. It's easy to show that we can take this basis 
as in Table 13. Note that we took these bases such that an optimal least eigenvalue 
of the Neron-Tate height pairing matrix is obtained. 

For the rational point P we now put 

P =mIPI+ ... + mP = mR+ . . + TnRr 

For the solutions we give in Tables T24, T28 and T48 the corresponding values of 

MI,... rnr, also for the points not on the infinite component Eo(IR). In the case 
of (Q24) we have P = TITT + m1P1 + m2P2, with mT = 0 if P is on Eo(IR), and 
mT = 1 if P is in the compact component. But as argued above we may assume 
that P is on Eo(IR), i.e. mT 0. Note that 

for (Q24): ml = ml T7nz'2 = m2, 

for (Q28): mT m (m - rn2 - m3 + m4 + M5), 

2 2 (-ml + m2 -m3 + mt + M5), 

3 =2 (-ml - m2 + n123 + m4 + M5), 

MZ= (ml + mn2 + m3 - M4m),5ni = M5, 

for (Q48): mT = - Tm-72 - m3), 

m = Tn (mI + m2 + m3), m' =-m3. 

In any case we put 

M2 maxjjm'j,.. , Imrl}7 

and we have 

q(P) = mo + m'q(RI) + ... + m'Oq(Rr), 

where we take m' E Z such that 0 < q(P) < 1. It follows that Im' < rM. An 
interesting point to notice about (Q24) is that Po is not independent of R1 and R2. 
Indeed, we have 2Po =-R1 + R2. In terms of q we have 

2q(Po) =-q(RI) + q(R2) + 1. 

It follows that we do not have to count with Po anymore, when we multiply the 
linear form by 2 and adapt m'. Equally interesting is the fact that in both cases 
(Q28) and (Q48) a similar relation (over Q) does not exist, or so it seems, at least 
not with very small coefficients. 

We put ui = wq(Ri) for i = 1,... ,r, and uo = wq(PO). Our linear form in 
elliptic logarithms then is 

L(P) = T2nW + T2lUl + ... + mTUr + UO, 
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for which we have the inequality 

(3) L(P) < c9e2c1O?c1-C1NI2 

On the other hand, in the cases of (Q28) and (Q48), David [D] gives 

JL(P)J > exp (-c4(log(rMf) + c5)(loglog(rM) + )r+3) 

But in the case of (Q24) we use 

2L(P) = (2mb + 1) + (2m, - 1)ul + (2mT + 1)u2 

instead of L(P) itself, as it has one term less. Then, based on r = 2 and the 
inequality max{ 2m' + 11, 12m - 11, 12m + 1 1} < 4M + 1, David [D] gives 

12L(P)I > exp (-c4(log(4M + 1) + c5)(loglog(4M + 1) + C6)4) 

Whatever the case may be, together with (3) this yields an absolute upper bound 
Mo for M. 

In Table 14 we take Ao corresponding to w, and A' corresponding to uo. To 
compute A/ we had to estimate the Neron-Tate height of the non-rational point 
Po. We used h(P) < clI + 1h(X1(P)), where h(X) is the absolute logarithmic Weil 
height for the algebraic number X. For computing c1l we always used the minimal 
model. Note that D < 2, since the coordinates of Po are quadratic. 

The reduction in the case of (Q24) goes just as in the previous section, based on 
inequality (3), but working with 2L(P). We take 

( 1 0 0 
A= [ 1 0 / 

[CUI] [CU2] [Cwl J 
and we look at the lattice point 

A(2m - 1, 2mb + 1, 2m/ + I)T = (2m - 1, 2mb + 1, A)T, 

where A thus is a good approximation to 2CL(P), viz. 

JA-2CL(P)I < (2(2Mo + 1) + 21m/| + 1) < 4Mo + 
3 

2 ~~~~~~~~~2' 
because imon < 2Mo. As in the previous section we obtain by (3) a reduced upper 
bound M1 for M, namely 

M, =L[-(log (2c9c) + IcIo + cii log - d22(2Mo+1)2-(4Mo + 3)))j 

In Table 15 we give the data for this reduction. 
In the cases (Q28) and (Q48) the reduction procedure is slightly different, be- 

cause now the linear forms in elliptic logarithms are inhomogeneous. We take the 
lattice as usual, spanned by the columns of 

1 0 .. ? 
0 1 .. ' O 

0A . ... I, 

[CuI] [CU2] *-- [Cur] [Cw] 

and look at the point 
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TABLE 14. Relevant constants from [T] 

ciurve (Q24) (Q28) (Q48) 
(a, b, c, (3,6, -3, (35, -350, 945, (105,210, -945, 

d, e) -6,3) -630, 105) -1890, 105) 
(al, a2, a3 (-2, -4,36, (-6,936. -73500, (-18, -1026,44100, 

a4, -108, -1543500, -4630500, 
a.6) 432) -1444716000) 4750893000) 

(A, B) (-147,610) (-1620675, (-5325075, 
385103250) 3590952750) 

(X1i, Y1 ) (X, t) (X. tJ) ( 41 (x + 1), 

98(-X + -1) 
o- 1 -1 1 

X0 -1 + 6 3 315 + 210 35 -315 + 210 105 
uT0 0 9.38860 0 
e1 8.82475... 1131.51... 1835.35... 
e2 5 246.906... 755.246... 
e3 -13.8247 ... -1378.42... -2590.60 ... 
w 1.96209 ... 0.160046 .. . 0.130311 ... 

Q?T 1.41977... 1.14814.. 1.28813... 
T0 0 9.38860 0 

P0 (-1? + 3, (315 + 21035, (157 105 

18 - 6 3) 36750 + 630 35) 55912-5 5) 

h(R1) 0.202321... 1.76131... 1.12812... 
h(R2) 0.506291 ... 1.17118 ... 1.00476 ... 
h(R3) 2.00293 ... 1.52711 ... 
h(R4) 2.80407 ... 
h(R5) 2.10666 ... 

Cl 0.194012 ... 0.612991 ... 0.613916 ... 
O(R1) 0.352986 ... 0.185963. .. 0.142707 ... 
O(R2) 0.192459... 0.540398... 0.469004... 
O(R3) 0.822229... 0.252395 ... 
O(R4) 0.422353... 
O(R5) 0.664566. . . 
C(PO) 0.342498... 0.491395... 

C9 3 5 = 0.577350 ... 0.234326 ... 0.104791 3 
Cio log(10) = 2.30258 ... 7.73976 7.71756 
C11 3.28540... 5.61238... 4.87006. 

h(Po) ? 9.15817 8.00858 
'I1 0.692592 ... 0.0297628 ... 0.0185963... 
't2 0.377623... 0.0864891... 0.0611166... 
U3 0.131595 ... 0.0328899 ... 
714 0.0675963 ... 
U5 0.106361 ... 
UO 0.0548158 ... 0.0640343... 
hE 13.0617 ... 19.0758 ... 21.3085. 

D 1 2 2 
A0 13.3810 ... 19.0758... 21.3085. 
A1 13.0617... 19.0758 ... 21.3085... 
A2 13.0617 ... 19.0758 ... 21.3085... 
A3 19.0758 ... 21.3085 ... 
A4 19.0758 ... 
A5 19.0758 ... 
Al 19.0758. 21.3085... 
C4 1.43221 X 1073 5.61880 x 10277 2.07088 x 10160 
C5 1 1.69314... 1.69314... 
C6 14.0617... 20.7690... 23.0016... 

AMO 2.90912 X 1040 8.81788 X 10145 5.88682 X 1085 

which most likely will not be a lattice point. Here the relevant distance d is that be- 
tween y and the nearest lattice point, since now A defined by A(m', .. ., m', ?n)T- 

y = (r ,... , ' A )T is approximately CL(P). To be precise, we have 

IS-CL(P)l 1 
~A - CL(P)~ <-_(rMo + 17n,'I + 1) < ?rM0/ + 
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TABLE 15. Data of the reductioin steps 

curve Mo C d > NI1 C d > AI2 C d > NI3 
(Q24) 2.90912 x 104U 10125 2.42146 x 1041 31 107 231.400 9 106 83.0301 8 
(Q28) 8.81788 x i0145 10883 9.12503 x 10146 52 iO17 340.506 8 1012 52.0672 7 
(Q48) 5.88682 x 10 10 2.66374 x 10 31 10 123.292 6 

TABLE 16. Runtimes 

curve comput. of O(Pj) reduction small solut. 
(Q24) 3s < Is 5s 
(Q28) 20m 8s 16m 56s 2h 20m 
(Q48) Im 2s 21s 3m 43s 

With this taken into account, noting that the LLL-algorithm also provides a lower 
bound for this type of d, and using inequality (3), we get a reduced upper bound 
M1 for M, namely 

Ml =L-log (cgc) + I2cIo + cil, log (,d2 vr we (rMo + 2,)) 

We have reduction data as in Table 15. 
Again it is straightforward to find all solutions below the reduced bounds (al- 

though in the rank 5 case this takes some runtime). This completes the proof. 
Finally we give in Table 16 the runtimes on a Pentium 75Mhz personal computer. 

4. THE CASE "CUBIC = CUBIC" 

In this section we prove Theorem B36, and thus also Theorem A36. In order 
to do this we develop a variant of the elliptic logarithms method. See also [SW], 
where we hope to describe the method for solving any equation of type 

s1U3 + S2U2V + S3UV2 + S4V3 + S5U2 + S6UV + S7V2 + S8U + S9V + Slo = 0 

that represents an elliptic curve. However, here we concentrate on the equation 
(C36) only, as a first example to gain experience with the method. 

The birational transformations 

r 237X+15Y-3375 r x 45U-75V+300 
(A\ -I 5X2+45X-21Y+4860' 5U+V 
V { V- 315X-75Y+17415 y 6750U2 +1410V2 +6300UJ-4740V 

V 
5X2+45X-21Y+4860' (5U+V)2 

relate equation (C36) and the minimal model 

(W36) y2 = X3 - 1575X + 52650. 

See [N] and [Co, Section 1.4] for an algorithm to compute these transformations. 
In Table 17 some data on this elliptic curves are given, namely the minimal 

discriminant i\, the j-invariant j, and the torsion group. 
Further we need the rank r, and a basis PI,... ,Pr for the free part of the 

Mordell-Weil group. We have the following result. 

TABLE 17. Data of elliptic curve 

culrve A j torsion- 
(W36) -947466720000 -26 3 5 .8123 3704400/8123 =2 33 2 73 8123 trivial 
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TABLE 18. Rank and basis of Mordell-Weil group 

curve r P1 P2 P3 P4 
(W36) 4 (-15,270) (15,180) (45,270) (-45,180) 

TABLE 19. Relevant constants on heights of basis points 

curve (W36) 
B 3.927 
H 12.73 

runtime lh 27m 

Proposition 3. The elliptic curve (W36) has rank r and basis P1I... ,P, for the 
free part of its Mordell- Weil group as in Table 18. 

Proof of Proposition 3. Again we use Cremona's mwrank. No difficulties were en- 
countered. We give the constants B and H as well as the runtimes on a Suin 
Sparcstation 4 in Table 19. O 

Again note that the basis given is optimal for the least eigenvalue of the Neron- 
Tate height pairing matrix. 

We consider a point 

P = m1P1 + rn2P2 + m3P3 + m4P4 

on the curve, with integral coordinates U, V on (C36). We put 

M =max rn7i. 
1<i<4 

As 
dV 

and 
d 

are two differential forms on the same elliptic curve, there 
3U2 - I Y 

should be a rational relationship. Indeed, a bit of calculation (see the birational 
transformations (4)) shows that 

dV _ 15dX 
(5) 3U2-1 2 Y 

For (U, V) E 2 on (C36) with V > 4, we see that U is a strictly increasing function 
of V, and likewise for V < -1. See Figure 1. 

For each point (U, V) E o 2 On (C36) with V < -1 or V > 4 there is a unique 
point (X, Y) E R 2 on (W36) with Y > 0, given by (4). For a point P on the curve 
we use (U,V) = (U(P),V(P)) and (X,Y) = (X(P);Y(P)) to denote coordinates 
on both models. Let F: (-o, -1] U [4, oo) -* R be given by 

F(V) = 15 3u(v) - 5v + 20 
F(v)~155u(v) +v 

where u(v) is the unique solution to 15u(v)3 - 15u(v) = - 4V2 + 3v for the given 
v. Then X = F(V). 
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v~~ 

-2 /1/ ?12 

FIGURE 1. The elliptic curve (C36) 

For V > 4 we have by (5) that 

(6) Iv3U21 Ixo Y 

where 

Xo = lim F(v) = 153 5 =-15c +3cv, 
v-0oo 5 + a 

for av = 15. Let Qo = (-15av + 3ac2, -90 + 60ac2). Then Qo ? E(IK), where 

K = ?(a), a cubic field, and X0 = X(Qo). 
Likewise, for V < -1 we have by (5) that 

,v dV 15 XO dX 

_ o3U2- 1 2 Y' 

with Xo as above. Note that aU - V +4 = 0 is the asymptote of the curve (C36); 

see Figure 1. 

For aU + 4 >V> 4 or aU + 4< V <-1 we have 3U2 1? (>4 -1) V2, 

so that in the case V > 4 we have 

f00 dV <f dV _c 
(8) J TU21< c v2 = v 

and in the case V < -1 we have 

V dV fV dV c 

(9) U= 4 V3 

where c = 45-1 6.38085 .. 
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Now consider equation (W36). We have 
fX dX fx dX 

1x0 Y 1x0 1X3 - 1575X+52650 
dX O dX 

Jxo \/X - 1575X + 52650 -Jx d 55 25 

and note that X (Q. Further, 

(P) =q(mniPl + m2P2 + 7n3P3 + 7mz4P4) 

ml O(Pl) + Mr25(P2) + m3q(P3) + rn45(P4) + MO, 

with mO E Z such that all s-values are in [0,1). By (6) it follows in the case V > 4 
that 

(10) /V 3U- 1 - 15 J 
Y 

d 
= 2 (wg(Qo) -w~(P)) 

oC dV 15 fX dX 

(11) -? 3U2 1 2 x0 Y 

15 

= 2 (-w(Qo) + mwb(Pi) + . .P. + m4w4(F4) + mow). 

Put u0 =wX(Qo) and Ui =wX(Pi) for i =1, 2, 3,4, and let 

L(P) - uom1u1-* *. *-m4U4 - m0w. 

Then (8), (9), (10) and (11) imply 
(12) L(P) = J V 2 cV d 15 

1) 00 3U2 - 3U2-1 2150Vy 

with as integration interval I =[V, oo) if V > 4, and I =(-oo, V] if V < -1. 
If V >6 then cgU < V <covU + 3, and it follows that X < 0. Moreover, 

15(-3U A- 5V - 20) - (5SU A- V) =74V - 50U - 300 > (74~ -5) V - 300 >0, 

so that the numerator 15(-3U + 5V -20) of IX is larger than the denominator 
5U + V. 

Similarly, if V < -5 then cgU + 43 < V < ctU + cv, and it follows that X < 0. 
Also, 

15(3U-5V+20)+ (5U+QV) =-74V+ 50U+300 > ( 74) V + 300>0, 

so that the numerator 15(3U-5V + 20) of wXQ is larger than the denominator 
-5U - V. 

So if V > 6 or V < -5 then for the Weil height of X we find 

(13) 
h(X) < log (15+3U-5V + 20 < log (15 ((5+- V) )V + sign(V) (4 - 20))) 

< log (135 -)+ ogU < 4.71750 + loga, a. 



ELLIPTIC BINOMIAL DIOPHANTINE EQUATIONS 1279 

TABLE 20. Relevant constants 

curve (C36) curve (C36) curve (C36) 

h(Pi) 0.561125 ... O(Qo) 0.392231 ... A1 15.1250 ... 

h(P2) 0.566020 ... ul 0.600689 ... A2 15.1250 ... 

h(P3) 0.578280 ... U2 0.466981... A3 15.1250 ... 
h(P4) 0.736397... U3 0.310495... A4 15.1250... 

h(Qo) < 5.66238 U4 0.719371... A' 15.1250... 
Cl 0.384689... uo 0.614429... c4 2.79031 x 10216 

k(Pi) 0.383460... hE 15.1250... C5 2.09861 ... 
k(P2) 0.298105 ... D 3 C6 17.2236 ... 
f(P3) 0.198210... Ao 15.1250... Mo 1.75995 x 10114 

k(P4) 0.459223... 

It is noteworthy that the above formula is the only point in this proof where we 
use the fact that U, V are integral. 

From Silverman [Sil2] we have 

(14) h(P) - -h(X) < 3.87831, 2 

and moreover 

(15) h(P) > c1M2. 

Putting everything together, we obtain from (12), (13), (14) and (15), under the 
condition V > 6 or V < -5, that 

(16) JL(P)J < 2 c < e123126-2e1M2 15 IVI 

Now we apply David's result [D], and obtain 

JL(P) > exp (-C4(log(4M) + C5)(log log(4M) + C6)7). 

Together with (16) this yields an absolute upper bound Mo for M. We have the 
data as in Table 20. Note that we used that gmoI < 4M. 

The reduction procedure runs just as in the previous section for the cases of 
(Q28) and (Q48), since the linear form also is inhomogeneous in this case. Thus 
the lattice is spanned by the columns of 

1 0 0 0 0 
0 1 0 0 0 

iA= O O 1 0 01, 
O O 0 1 0 

< [CU;] [Cu2] [CU3] [CU4] [C1 ] 

and d is the distance between the point 

Y = (O, O, O, O ,-_[CUo]) 
T 

and the nearest lattice point. We have 

JA-CL(P)l< ? (4Mo + 1)<4Mo2+ 
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TABLE 21. Data of the reduction steps for (C36) 

curve Mo C d > M1 C d> M2 
(C36) 1.75995 x 10114 10575 1.12582 x 10115 37 1013 265.465 6 

TABLE 22. Runtimes 

curve comput. of q(Pi) reduction small solut. 
(C36) 4m 38s 2m 44s 9m 19s 

and thus, using inequality (16), we reach a reduced upper bound M1 for M, namely 

M, = ; log C+ 12-3126 -log d2 - 4 -(o + 2))) 

We have reduction data as in Table 21. 
Again it is straightforward to find all solutions below the reduced bound. This 

completes the proof. 
Finally we give in Table 22 the runtimes on a Pentium 75Mhz personal computer. 
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